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We study the fundamental physics of cascades and spectra in two-dimensional (2D)
Cahn-Hilliard-Navier-Stokes (CHNS) turbulence, and compare and contrast this system
with 2D magnetohydrodynamic (MHD) turbulence. The important similarities include
basic equations, ideal quadratic invariants, cascades, and the role of linear elastic waves.
Surface tension induces elasticity, and the balance between surface tension energy and
turbulent kinetic energy determines a length scale (Hinze scale) of the system. The Hinze
scale may be thought of as the scale of emergent critical balance between fluid straining
and elastic restoring forces. The scales between the Hinze scale and dissipation scale
constitute the elastic range of the 2D CHNS system. By direct numerical simulation,
we find that in the elastic range, the mean square concentration spectrum H

ψ
k of the 2D

CHNS system exhibits the same power law (−7/3) as the mean square magnetic potential
spectrum HA

k in the inverse cascade regime of 2D MHD. This power law is consistent with
an inverse cascade of Hψ , which is observed. The kinetic energy spectrum of the 2D CHNS
system is EK

k ∼ k−3 if forced at large scale, suggestive of the direct enstrophy cascade
power law of 2D Navier-Stokes turbulence. The difference from the energy spectra of 2D
MHD turbulence implies that the back reaction of the concentration field to fluid motion
is limited. We suggest this is because the surface tension back reaction is significant only
in the interfacial regions. The interfacial regions fill only a small portion of the 2D CHNS
system, and their interface packing fraction is much smaller than that for 2D MHD.
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I. INTRODUCTION

Binary liquid mixtures can pass spontaneously from one miscible phase to two coexisting
immiscible phases following a temperature drop. This second-order phase transition is called a
spinodal decomposition. The Cahn-Hilliard-Navier-Stokes (CHNS) model [1,2] is the standard
model for binary liquid mixture undergoing spinodal decomposition. The 2D CHNS system is as
follows (the definitions and derivation are discussed below):

∂tψ + v · ∇ψ = D∇2(−ψ + ψ3 − ξ 2∇2ψ), (1)

∂tω + v · ∇ω = ξ 2

ρ
Bψ · ∇∇2ψ + ν∇2ω, (2)

v = ẑ × ∇φ, ω = ∇2φ, (3)

Bψ = ẑ × ∇ψ, jψ = ξ 2∇2ψ. (4)

The definitions of the variables are discussed later in the paper. It is evident that this system is
closely analogous to the two-dimensional (2D) magnetohydrodynamics (MHD) model for plasmas:

∂tA + v · ∇A = η∇2A, (5)

∂tω + v · ∇ω = 1
µ0ρ

B · ∇∇2A + ν∇2ω, (6)
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TABLE I. Comparison of 2D MHD and the 2D CHNS system.

2D MHD 2D CHNS

Ideal quadratic conserved
quantities Conservation of E, HA, and HC Conservation of E, Hψ , and HC

Role of elastic waves Alfvén wave couples v CHNS linear elastic wave couples v
with B with Bψ

Origin of elasticity Magnetic field induces elasticity Surface tension induces elasticity
Origin of the inverse Coalescence of magnetic flux Coalescence of blobs of the

cascades blobs same species
Inverse cascades Inverse cascade of HA Inverse cascade of Hψ

Power law of spectra HA
k ∼ k−7/3 H

ψ
k ∼ k−7/3

v = ẑ × ∇φ, ω = ∇2φ, (7)

B = ẑ × ∇A, j = 1
µ0

∇2A. (8)

Since 2D MHD turbulence has been well studied [3–15], it provides us with potential insight and
guidance for exploring the physics of 2D CHNS turbulence. The comparison of 2D MHD and the
2D CHNS system is shown in Table I; the details are discussed later in this paper.

The similarity between binary liquid mixture and 2D MHD was first discussed by Ruiz and
Nelson [16]. They addressed only the regime when the binary liquid mixture is miscible, i.e., above
the critical temperature. The governing equation for this regime is

∂tψ + v · ∇ψ = D∇2ψ. (9)

In this limit, basically there is no difference from 2D MHD. However, the more interesting and
challenging regime occurs when the binary liquid mixture undergoes spinodal decomposition, i.e.,
below the critical temperature.

When the binary liquid mixture is quenched below the critical temperature, spinodal decomposi-
tion occurs. Small-scale blobs tend to coalesce and form larger blobs [17–20]; see Fig. 1 (top panel)
for an illustration. The blob size grows as L ∼ t2/3 if unforced [21]. The length scale growth can
be arrested by external fluid forcing, and an emergent characteristic length scale of the blob size is
formed by the critical balance between turbulent kinetic energy and surface tension energy in 2D
CHNS turbulence [22]. In three dimensions, the length scale growth is also arrested when proper

FIG. 1. Top panels are pseudocolor plots of ψ field for an unforced run (Run 1) at various times; bottom
panels are the ones for a forced run (Run 4). Time t is normalized by the diffusive mixing time tm = ξ 2/D.

054403-2



CASCADES AND SPECTRA OF A TURBULENT SPINODAL . . .

external forcing is applied, and the emergent characteristic length scale of blob size is consistent
with the Hinze scale: LH ∼ ( ρ

σ
)−3/5ϵ−2/5 where ρ is density, σ is surface tension, and ϵ is the energy

dissipation rate per unit mass [23,24]. In the inverse energy cascade regime of the 2D CHNS system,
the characteristic length scale is also consistent with the Hinze scale [25].

Previous studies did not adequately separate the Hinze scale from the dissipation scale. We define
the elastic range as the range of scales from the Hinze scale down to the dissipation scale. This is
where the surface tension-induced elasticity is important to the dynamics. The 2D CHNS system
is more MHD-like in the elastic range. The power laws of the turbulent spectra in the elastic range
were not investigated by previous studies.

In this study we first describe the fundamental theory of spinodal decomposition in Sec. II.
In Sec. III we compare and contrast 2D CHNS with 2D MHD in terms of basic equations, ideal
quadratic conserved quantities, cascades, and linear elastic waves. The concepts of the Hinze scale
and the elastic range are explained in detail in Sec. IV. Next we use the PIXIE2D code [26,27] to
simulate the 2D CHNS system in Sec. V. We focus on the turbulent spectra and cascades in the elastic
range and compare them with 2D MHD. Conclusions and discussions are presented in Sec. VI.

II. GOVERNING EQUATIONS FOR SPINODAL DECOMPOSITION

We consider spinodal decomposition in a symmetric (50%–50%) binary liquid mixture of equal
density. Spinodal decomposition is a second-order phase transition and so can be modeled by Landau
theory.

The corresponding order parameter is the local relative concentration ψ(x,t):

ψ = ρA − ρB

ρA + ρB

, (10)

where ρA and ρB are the local densities of the two species. When ρB = 0, ψ = +1 implies an A-rich
phase; when ρA = 0, ψ = −1 implies a B-rich phase. The range of ψ is thus ψ ∈ [−1,1]. The free
energy functional reads as

F [ψ] =
∫ (

1
2
Aψ2 + 1

4
Bψ4 + ξ 2

2
|∇ψ |2

)
dr, (11)

where A and B are coefficients of a Taylor expansion, and ξ is a coefficient describing the strength
of the surface tension interaction. ξ also characterizes the interfacial thickness. The first two terms
characterize the second-order phase transition dynamics, while the last term is the curvature penalty.
In Landau theory, B must always be greater than 0 for the system to be thermodynamically stable,
while A can be either positive or negative, i.e.,

A = A0(T − Tc), (12)

where A0 is some temperature-independent constant, T is the temperature, and Tc is the critical
temperature for spinodal decomposition. As shown in Fig. 2, when T > Tc, A > 0, the free energy
F [ψ] has a “V” shape, so there is only one minimum at ψ = 0. When T < Tc, A < 0, the free
energy F [ψ] has a “W” shape, so there is one unstable maximum at ψ = 0, and two minima at

ψ = ±
√

−A
B

. When the homogeneous phase of the binary liquid mixture is quenched down to below
the critical temperature, the ψ = 0 phase becomes unstable because the system tends to reach its

minimal energy, and the system now prefers the ψ = ±
√

−A
B

phases, implying phase separation.
Because of the definition of ψ , the minimal energy should be reached when ψ = ±1, so we have
B = −A. For simplicity, we study the isothermal case when the temperature is fixed below Tc, i.e.,
A is constant. Without loss of generality, we set B = −A = 1:

F [ψ] =
∫ (

−1
2
ψ2 + 1

4
ψ4 + ξ 2

2
|∇ψ |2

)
dr. (13)

054403-3



XIANG FAN, P. H. DIAMOND, L. CHACÓN, AND HUI LI

FIG. 2. Free energy functional F [ψ] for T > Tc and T < Tc.

The dynamics of the binary liquid mixture under spinodal decomposition is fully determined by
this free energy functional. The chemical potential is

µ = δF

δψ
= −ψ + ψ3 − ξ 2∇2ψ. (14)

According to Fick’s Law J = −D∇µ (where D is diffusivity) and the continuity equation dψ/dt +
∇ · J = 0, we obtain the Cahn-Hilliard Equation:

dψ/dt = D∇2(−ψ + ψ3 − ξ 2∇2ψ). (15)

The total derivative is d/dt = ∂ψ/∂t + v · ∇ when flow is present, where v is velocity. The fluid
motion satisfies the Navier-Stokes Equation, with an additional force term due to surface tension:

∂tv + v · ∇v = − 1
ρ

∇p − ξ 2

ρ
∇2ψ∇ψ + ν∇2v. (16)

Here ν is viscosity, p is pressure, and ρ = ρA + ρB is density. The second term on the right-hand
side comes from the surface tension force, which has the from − 1

ρ
ψ∇µ. This means that the force

pushes two species in opposite directions, with a strength proportional to the gradient of the chemical
potential. This surface tension force can be written in the form − 1

ρ
∇(− 1

2ψ2 + 3
4ψ4 − ξ 2ψ∇2ψ) −

ξ 2

ρ
∇2ψ∇ψ . The first part can be absorbed into the definition of pressure p, leaving the second part

as in Eq. (16). Finally, for 2D incompressible flow, ∇ · v = 0, so it is more convenient to take the
curl of Eq. (16) and work with the vorticity equation.

To summarize, the governing equations for spinodal decomposition in 2D symmetric binary
liquid mixture are the Cahn-Hilliard-Navier-Stokes (CHNS) equations: Eqs. (1)–(4), where φ is the
stream function, ω is vorticity, and Bψ and jψ are analogous to magnetic field and current in MHD,
respectively, which will be discussed in the next section.

III. COMPARISON AND CONTRAST OF 2D CHNS TURBULENCE AND 2D MHD TURBULENCE

A. Basic equations

The 2D CHNS system is an analog to 2D magnetohydrodynamics (MHD) in plasma physics.
MHD turbulence is comparatively better understood due to several decades of extensive study. By
comparison and contrast of 2D CHNS turbulence and 2D MHD turbulence, we can understand each
more clearly.

The 2D MHD equations are Eqs. (5)–(8), where A is the scalar magnetic potential in two
dimensions, B is magnetic field, j is current, η is resistivity, and µ0 is magnetic permeability.
Comparing Eqs. (1)–(4) and Eqs. (5)–(8), we immediately grasp the correspondence between these
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TABLE II. The correspondence between 2D MHD and the 2D
CHNS system.

2D MHD 2D CHNS

Magnetic potential A ψ

Magnetic field B Bψ

Current j jψ

Diffusivity η D

Interaction strength 1
µ0

ξ 2

two systems, which is summarized in Table II. Note that the surface tension force ξ 2

ρ
Bψ · ∇∇2ψ in

Eq. (2) and the j × B force 1
µ0ρ

B · ∇∇2A in Eq. (6) have the same structure.
The major difference is between the dissipation terms in Eqs. (1) and (5). The CHNS equations

contain a negative diffusivity term −D∇2ψ , self-nonlinear diffusivity term D∇2ψ3, and a hyper-
diffusivity term −ξ 2D∇2∇2ψ . The MHD equations contain only one (positive) resistivity term
η∇2A. Another difference to notice is that the concentration ψ ranges from −1 to 1, limited by
physics definition ψ = ρA−ρB

ρA+ρB
. The magnetic potential A has no such restriction.

The CHNS system is more similar to MHD in two than in three dimensions, because magnetic
potential A is a scalar in two dimensions but is a vector in three dimensions. The concentration ψ is
always a scalar, regardless of dimension.

B. Ideal quadratic conserved quantities

The quadratic conserved quantities in the ideal system, which means D, η = 0, and ν = 0 here,
are important to the study of turbulent cascades. The real turbulent systems with finite dissipation
are different from ideal systems; nevertheless, the ideal conserved quantities are still important
constraints imposed on the nonlinear dynamics. In particular, the study of absolute equilibrium
distributions of the ideal systems provides us indications of cascade directions.

It is known that there are three ideal quadratic conserved quantities in 2D MHD: total energy E
(which is the sum of kinetic energy EK and magnetic energy EB), mean square magnetic potential
HA, and cross helicity HC :

E = EK + EB =
∫ (

ρv2

2
+ B2

2µ0

)
d2x, (17)

HA =
∫

A2 d2x, (18)

HC =
∫

v · B d2x. (19)

Note that HA is not a conserved quantity in three-dimensional (3D) MHD; instead, the magnetic
helicity HB =

∫
A · B d3x is conserved.

When the dissipation is set to 0, the difference between the 2D CHNS system and 2D MHD dis-
appears, so the ideal quadratic conserved quantities in the 2D CHNS system are the direct analogues
of those in MHD, namely, total energy E, mean square concentration Hψ , and cross helicity HC :

E = EK + EB =
∫ (

ρv2

2
+

ξ 2B2
ψ

2

)

d2x, (20)

Hψ =
∫

ψ2 d2x, (21)

HC =
∫

v · Bψ d2x. (22)

054403-5



XIANG FAN, P. H. DIAMOND, L. CHACÓN, AND HUI LI

TABLE III. The cascade directions for 2D MHD, CHNS, and
NS turbulences.

Physics system Conserved quantity Cascade direction

2D MHD Ek Direct
HA

k Inverse
2D CHNS Ek Direct

H
ψ
k Inverse

2D NS EK
k Inverse

,k Direct

Note that some previous works [22,25] use another definition of energy: E′ = EK + F =
∫

( ρv2

2 −
1
2ψ2 + 1

4ψ4 + ξ 2

2 |∇ψ |2) d2x. This is also an ideal conserved quantity, but it is not quadratic. In this
paper, we focus on quadratic conserved quantities, because higher-order conserved quantities are not
strictly conserved when the k space is discretized and truncated at large k. Since discretization and
truncation are unavoidable when doing statistical physics and numerical simulation, only quadratic
conserved quantities are robust enough to be meaningful.

The physical meaning of cross helicity in the CHNS equations is not clear, as it is in MHD. The
role of cross helicity is an interesting question, but it is beyond the scope of this paper. It will be
investigated further in future works.

In addition, recall that there are only two ideal quadratic conserved quantities in 2D Navier-Stokes
(NS) turbulence: kinetic energy EK and enstrophy ,:

EK =
∫

v2

2
d2x, (23)

, =
∫

ω2

2
d2x. (24)

It is clear that the constraints on the dynamics of the CHNS system are more like those for 2D MHD
than 2D NS. The conservation of enstrophy is broken in the 2D CHNS system by the surface tension
force, just as it is broken by the j × B force in 2D MHD. Although enstrophy is not a strict ideal
conserved quantity in 2D CHNS system, it is still useful to retain this concept, for reasons discussed
below.

C. Cascades

Turbulence cascade directions of various physics systems are suggested by the absolute
equilibrium distributions, i.e., the Gibbs distribution [9,28]. The peak of the absolute equilibrium
distribution for each quadratic conserved quantity is a good indicator of the corresponding cascade
direction. This approach depends only on the ideal quadratic conserved quantities of the system.
Because the ideal quadratic conserved quantities of 2D CHNS and 2D MHD are direct analogues,
we can then obtain an indication of the cascade directions in 2D CHNS by changing the name in
variables. The summary of cascade directions of relevant physics systems are shown in Table III.

The Gibbs distribution for 2D MHD is

ρG = Z−1 exp(−αE − βHA − γHC), (25)

where α, β, and γ are Lagrangian multipliers and Z is the partition function. Similarly, the Gibbs
distribution for 2D CHNS is

ρG = Z−1 exp(−αE − βHψ − γHC). (26)

By calculating each ideal spectral density from the above absolute equilibrium distribution,
suggested cascade directions can be extracted. The second-order moment for a Gaussian distribution
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ρ = Z−1 exp − 1
2

∑
i,j Aij xixj is

⟨xixj ⟩ = A−1
ij . (27)

Write the ideal quadratic conserved quantities in terms of Fourier modes and in the discrete form,
and restrict the index of summation k within the band kmin < k < kmax:

E = 1
2

∑

k

k2(|φk|2 + |ψk|2), (28)

Hψ =
∑

k

|ψk|2, (29)

HC =
∑

k

k2φkψ−k. (30)

Plugging the above expressions into Eqs. (26) and (27) (set ρ = 1 and ξ 2 = 1 for simplicity), it is
then straightforward to obtain the expressions for ideal spectral densities:

EK
k = 1

2
k2〈∣∣φ2

k

∣∣〉 = 2πk

α

[
1 + k2 tan2 θ

k2 + (β/α) sec2 θ

]
, (31)

EB
k = 1

2
k2〈∣∣ψ2

k

∣∣〉 = 2πk

α

k2 sec2 θ

k2 + (β/α) sec2 θ
, (32)

H
ψ
k =

〈∣∣ψ2
k

∣∣〉 = 2k−2EB
k , (33)

HC
k = k2⟨φkψ−k⟩ = −2γ

α
EB

k , (34)

where sin θ = γ /(2α). The requirement that EK
k , EB

k , and H
ψ
k are always positive definite implies

that α > 0, k2
min + (β/α) sec2 θ > 0, and |γ | < 2α. If the spectrum is peaked at high k, and excitation

is injected at intermediate scales, we expect the spectrum to relax towards high k [9]. The trend
suggests a direct cascade. Similarly, an inverse cascade is suggested if a spectrum is peaked at small
k. So for the 2D CHNS system, we predict a direct energy cascade and an inverse cascade of HA

k .
The spectral transfer of cross helicity spectral density HC

k needs more consideration and is beyond
the scope of this paper.

In 2D MHD, the inverse cascade of HA can be understood as the process of magnetic flux
coalescence [4]. Similarly, in 2D CHNS, the inverse cascade of Hψ can be related to the coalescence
of blobs of the same species.

D. Linear elastic wave

Since Alfvén waves play a crucial role in MHD turbulence, it is meaningful to examine the similar
linear elastic wave in CHNS system. Recall that in the limit of small damping, the dispersion relation
for the Alfvén wave in 2D MHD is

ω(k) = ±

√
1

µ0ρ
|∇A0 × k| − 1

2
i(η + ν)k2. (35)

It is straightforward to linearize the CHNS equations and obtain a similar linear elastic wave:

ω(k) = ±

√
ξ 2

ρ
|∇ψ0 × k| − 1

2
i(CD + ν)k2, (36)

where C = [−1 − 6ψ0∇2ψ0/k2 − 6(∇ψ0)2/k2 − 12ψ0∇ψ0 · ik/k2 + 3ψ2
0 + ξ 2k2] is a dimen-

sionless coefficient. The 2D CHNS system spontaneously leads to a state of phase separation.
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FIG. 3. The linear elastic wave (left) in the 2D CHNS system propagates only along the interface, similar
to capillary wave (right).

Inside a blob of the same species, the concentration field ψ0 is homogeneous, so ∇ψ0 → 0. ∇ψ0 is
large only along the interface of blobs, as shown in Fig. 3. The CHNS linear elastic wave propagates
along the interface of the two species where ∇ψ0 ̸= 0, so it is much like a capillary wave.

Alfvén waves and CHNS linear elastic waves are similar, not only due to the resemblance of the
dispersion relations, but also because both wave propagate along B0 or Bψ0 field lines. Both waves
are elastic waves, in which magnetic tension and surface tension generate restoring forces that act as
elasticity. The Alfvénization process in MHD turbulence couples v with B, and even a weak mean
magnetic field can spontaneously convert fluid eddies into Alfvén waves [4]. The Alfvénization
process leads to Alfvénic equipartition ρ⟨v2⟩ ∼ 1

µ0
⟨B2⟩ of the fields. A similar elasticization process

can also occur in the 2D CHNS system, because of the presence of linear elastic waves. The
corresponding elastic equipartition for the 2D CHNS system is

ρ⟨v2⟩ ∼ ξ 2〈B2
ψ

〉
. (37)

An interesting difference between Alfvén wave and the CHNS linear elastic wave is that the nonideal
part of the dispersion relation for CHNS linear elastic wave can be either positive or negative
depending on k: if CD + ν > 0, then the wave is damped; but if CD + ν < 0, growth is possible.
This wave growth is physical and is responsible for the pattern formation during the linear phase,
and the sustainment of sharp interfaces that separate phases during the dynamical evolution of
the physical system in the nonlinear phase. It is important to note that treating this antidiffusive
term numerically is nontrivial and requires unconditionally energy-stable temporal update schemes
that ensure energy is either conserved or slightly dissipated. In this work, we have employed the
MP-BDF2 energy-stable scheme proposed in Ref. [29], which in addition to being energy-stable is
unconditionally uniquely solvable.

IV. IMPORTANT LENGTH SCALES AND RANGES OF 2D CHNS TURBULENCE

In the forced 2D CHNS system, large blobs in the binary liquid mixture tend to be broken up by
turbulent fluid straining, while small blobs tend to stick together due to surface tension. From this
competition, a statistically stable length scale for the blob size, the Hinze scale LH , emerges. LH is
defined by balancing turbulent kinetic energy and surface tension energy [23,30]:

ρ⟨v2⟩
σ/LH

∼ 1, (38)

where σ is surface tension. According to Refs. [17,18], the surface tension is σ =
√

8
9ξ . The surface

tension energy can also be expressed in terms of Brms
ψ (Brms

ψ = ⟨B2
ψ ⟩1/2). The key is to identify the

relevant length scale for ∇ψ . We propose to use the geometric mean of the blob size LH and the
interface width ξ , because they are the longest and shortest gradient length scales, respectively,
as shown in Fig. 4. Assuming the length scale for Brms

ψ is the geometric mean of LH and ξ , i.e.,
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FIG. 4. The gradient length scales.

Brms
ψ ∼

√
2ψ
LH

2ψ
ξ

∼
√

1
LH ξ

, then the original expression for surface tension energy σ/LH is consistent

with our expression ξ 2⟨B2
ψ ⟩ in Eq. (20). It is interesting to note that the critical balance Eq. (38) is

then consistent with elastic equipartition (ρ⟨v2⟩ ∼ ξ 2⟨B2
ψ ⟩).

The expression for the Hinze scale was originally derived for the 3D NS direct energy cascade
regime [30]. The velocity was estimated using the Kolmogorov energy distribution law, ⟨v2⟩/kH ∼
ϵ2/3k

−5/3
H where ϵ = ν

∫
ω2 dx2 is the kinetic energy dissipation rate per unit mass and kH = 2π/LH .

We then obtain the expression

LH ∼
(

ρ

ξ

)−3/5

ϵ−2/5. (39)

However, in the 2D NS direct enstrophy cascade regime, the velocity distribution is ⟨v2⟩/kH ∼
ϵ

2/3
, k−3

H where ϵ, = ν
∫

(∇ × ωẑ)2 dx2 is the enstrophy dissipation rate per unit mass. Therefore, in
two dimensions:

LH ∼
(

ρ

ξ

)−1/3

ϵ
−2/9
, . (40)

Note that the Hinze scale depends on the magnitude of the external forcing via ϵ,, and it does not
depend on the scale of the external forcing. The Hinze scale separates the k space into two ranges:
the scales larger than LH form the hydrodynamic range, where the usual eddy break-up process
dominates. The range of scales between LH and dissipation scale Ld is the elastic range, where the
blob coalescence process dominates, as shown in Fig. 5. Separation between the Hinze scale LH

FIG. 5. The Hinze scale, hydrodynamic range, and elastic range.
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FIG. 6. The A blobs in 2D MHD (Run 6) and the ψ blobs in the 2D CHNS system (Run 2).

and dissipation scale Ld is critical to defining an elastic range. The dissipation scale here should be
related to the direct enstrophy cascade. By simple dimensional analysis, we obtain Ld = (ν3/ϵ,)1/6.
Defining a dimensionless number for the ratio of LH to Ld gives

LH/Ld = Hd =
(

ρ

ξ

)−1/3

ν−1/2ϵ
−1/18
, . (41)

Hd ≫ 1 is required to form a large enough elastic range. It is clear that reducing ν is an efficient
way to obtain a longer elastic range.

The A blobs in 2D MHD and ψ blobs in the 2D CHNS system are shown side by side in Fig. 6. In
the elastic range of the 2D CHNS system, the blob coalescence process is analogous to the magnetic
flux blob coalescence process in 2D MHD. The former leads to the inverse cascade of Hψ , and the
latter leads to the inverse cascade of HA. In the elastic range of the 2D CHNS system, surface tension
induces elasticity and plays a major role in defining a restoring force. Similarly, in 2D MHD, the
magnetic field induces elasticity and make MHD different from a pure fluid. The 2D CHNS system
is more MHD-like in the elastic range.

V. NUMERICAL RESULTS

A. Basic setup

We solve 2D CHNS Eqs. (1)–(4) and 2D MHD Eqs. (5)–(8) with the PIXIE2D code [26,27]. The
simulation box size is L0 × L0 = 2π × 2π , and the resolution is 1024 × 1024. External forcing is
applied to the A and φ field with the sinusoidal form fA,φ(x,y) = f0A,φ sin[x ∗ int(kf A,φ cos θA,φ) +
y ∗ int(kf A,φ sin θA,φ) + ϕA,φ], where f0 is the forcing magnitude, kf is the forcing scale, and
θ,ϕ ∈ [0,2π ) are random angle and random phase that change at each time step, respectively. This
kind of external forcing keeps the system isotropic and homogeneous.

The free parameters in the equations are ξ (or µ0), D (or η), ν, and ρ. In addition, the external
forcing properties f0A,φ , and kf A,φ are also adjustable. Important dimensionless numbers here are
as follows [25,31]:

(1) LH/Ld = Hd, the ratio of the Hinze scale to dissipation scale.
(2) Reλ =

√
10EK/ρ

√
ϵν, the Taylor microscale Reynolds number.

(3) Sc = ν/D, the Schmidt number; or Pr = ν/η, the Prandtl number.
(4) Ch = ξ/L0, the Cahn number, which is the ratio of the interfacial thickness to the system

size.
(5) We = ρLf f0φ/σ (where Lf = 2π/kf ), the forcing scale Weber number, which characterizes

the relative importance of the external forcing compared to the surface tension.
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FIG. 7. The PDF of ψ (Run 2) and normalized A (Run 6). The PDF of ψ falls into the range [−1,1]
spontaneously.

(6) Gr = L2
0f0φ/ν2, the Grashof number, which approximates the ratio of the external forcing to

viscosity.
We keep Sc = Pr = 1 in all our runs, and other parameters are listed in Table V.
The system is periodic in both directions. The initial condition for the concentration field ψ (or

magnetic potential field A) is a random distribution of +1 and −1, while the stream function field φ
is 0 everywhere initially. Although the range of ψ is [−1,1] from its physics definition ψ = ρA−ρB

ρA+ρB
,

we don’t enforce this restriction in our simulation and let it freely evolve according to Eqs. (1)–(4).
This approach is valid because the probability density function (PDF) of ψ lies mostly in the range
[−1,1] spontaneously, as shown in Fig. 7. This PDF is consistent with previous studies [32].

2D simulations are sufficient to capture much of the important physics of the CHNS turbulence.
The length scale growth, the arrest of the length scale growth, the emergence of the Hinze scale, and
the inverse cascade of Hψ appear in both 3D and 2D simulations [23]. It is well known that 2D and 3D
Navier-Stokes turbulence have totally different cascades and spectra, but 2D and 3D MHD turbulence
are rather more similar. So as an analogy, 2D and 3D CHNS turbulence also should not differ much.

B. Benchmark

In the simulation, we verified that, if unforced, the blob coalescence progresses, and the blob size
grows until it reaches the system size. If the φ field is forced at large scale, blob size growth can be
arrested. See Fig. 1 for an illustration. Define the blob size L as

L(t) = 2π

∫
Sk(k,t) dk∫
kSk(k,t) dk

(42)

where Sk(k,t) = ⟨|ψk(k,t)|2⟩ is the structure function. This definition essentially picks the peak of
the structure function, if it has a clear peak.

Earlier numerical studies [17,18] observed that, if the system is unforced, the blob size L grows
such that L ∼ t2/3 at the late stage of the blob coalescence process. This exponent can be obtained
dimensionally by balancing the advection term v · ∇ω and the surface tension force term ξ 2

ρ
Bψ ·

∇∇2ψ in Eq. (2) and assuming the velocity can be estimated by v ∼ L̇. The presence of external
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FIG. 8. Blob size growth for Run 1 to Run 5. Dashed lines are corresponding the Hinze scales.

forcing can arrest the length scale growth [22]. Larger forcing leads to a larger enstrophy dissipation
rate ϵ,, and thus a smaller Hinze scale. Figure 8 supports this finding. The peak of the H

ψ
k spectrum

moving towards larger scale in Fig. 10 is consistent with the blob size L growth shown in Fig. 8.

C. The Hψ
k flux

The directions of cascades are suggested by the sign of the corresponding spectral fluxes. We
define the H

ψ
k flux and the HA

k flux as

5HA(k) =
∑

k<k′

THA(k′), where THA(k) = ⟨A∗
k(v · ∇A)k⟩, (43)

5Hψ (k) =
∑

k<k′

THψ (k′), where THψ (k) = ⟨ψ∗
k (v · ∇ψ)k⟩. (44)

If a flux is negative, then the corresponding transfer is inverse, suggestive of an inverse cascade.
See Fig. 9 for our simulation results. For the MHD case (left), an external forcing on the magnetic
potential A is applied on k = 128. The small-scale A forcing drives an inverse transfer of HA. For
the CHNS case (right), no forcing on ψ is necessary for the appearance of an inverse transfer of Hψ .
The negative diffusion term in the CHNS equations leads to small-scale instability. Thus it plays a
similar role to forcing of ψ .

D. The Hψ
k spectrum power law

It is known that the dynamics of 2D MHD turbulence is dominated by the inverse cascade of HA,
if HA is injected at small scales. The corresponding power law of the HA

k spectrum is −7/3:

HA
k ∼ ϵ

2/3
HAk−7/3. (45)

Here ϵHA is the HA dissipation rate, and see Fig. 10 (left) for the simulation result. Note that in
order to obtain a 2D MHD setup similar to the 2D CHNS system, small-scale external forcing of the
A field and large-scale external forcing of the φ field are imposed.

The scaling argument for the power of −7/3 for 2D MHD is as follows. Assuming there
is a constant mean square magnetic potential dissipation rate ϵHA, according to the Alfvénic
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FIG. 9. The HA
k flux (left) for MHD (Run 6), and the H

ψ
k flux (right) for CHNS (Run 2).

equipartition (ρ⟨v2⟩ ∼ 1
µ0

⟨B2⟩), the time scale for the decay of HA (ϵHA ∼ HA/τ ) can be estimated
by τ ∼ (vrmsk)−1 ∼ (Brmsk)−1. Define the spectrum to be HA =

∑
k HA

k ∼ kHA
k , so Brms ∼ kA ∼

k(HA)1/2 ∼ (HA
k )1/2k3/2. Therefore, ϵHA ∼ HA/τ ∼ (HA

k )2/3k7/2, leading to Eq. (45).
The same argument can be applied to 2D CHNS turbulence to get a (similar) Hψ spectrum.

Assuming that elastic equipartition applies to the 2D CHNS system (ρ⟨v2⟩ ∼ ξ 2⟨B2
ψ ⟩) (see Fig. 11),

the time scale for the decay of Hψ is τ ∼ (vrmsk)−1 ∼ (Brms
ψ k)−1. Then by repeating the above

argument for MHD, it is easy to obtain the H
ψ
k spectrum:

H
ψ
k ∼ ϵ

2/3
Hψk−7/3. (46)

The simulation result for the H
ψ
k spectrum in 2D CHNS turbulence in Fig. 10 (right) verifies

the similarity to the HA
k spectrum in 2D MHD turbulence. The peak of the H

ψ
k spectrum, which

gives the approximate blob size according to Eq. (42), moves towards larger scale, as shown in
Fig. 10. The blob coarsening process is consistent with the inverse cascade of Hψ . Moreover, the
H

ψ
k spectrum with power law −7/3 is indeed a good fit, as predicted by the inverse cascade of Hψ

argument. Again, we assumed (marginally satisfied) elastic equipartition in order to obtain the −7/3
power law. The result fits the simulation very well. These findings suggest that the dynamics of the
fluctuating concentration field is governed by the inverse cascade of Hψ .

FIG. 10. The HA
k spectrum in 2D MHD for Run 6 at various times (left), and the H

ψ
k spectrum in 2D CHNS

for Run 2 (right).
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FIG. 11. The ratio of EK to EB for Run 1 to Run 4 supports the assumption of elastic equipartition
(ρ⟨v2⟩ ∼ ξ 2⟨B2

ψ ⟩). If the forcing intensity is too strong, then the elastic forcing term in the ω equation becomes
negligible, and the system does not significantly differ from the 2D NS equation. In our study, though we tried
a broad range of forcing intensity, larger forcing (than Run 5) may break the equipartition of the kinetic and
magnetic energy.

The −7/3 power is robust. It does not change with the magnitude of external forcing, as long as
the separation between the Hinze scale and the dissipation scale is maintained, so the elastic range
is long enough (Hd ≫ 1). Figure 12 gives the H

ψ
k spectra for different external forcing strengths. It

shows that the power −7/3 remains unchanged. Note that larger external forcing leads to a smaller
Hinze scale according to Eq. (40), so the elastic range is shorter. If the Hinze scale is close to or
even smaller than the dissipation scale, there will be no clear elastic range, and thus no power law

FIG. 12. Hψ spectra for Run 1 to Run 4, with different magnitudes of external forcing f0φ thus different
Hinze scales. The Hinze scale for each run is marked by a dashed line with the same color.
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FIG. 13. Kinetic energy spectrum (left) and magnetic energy spectrum (right) for Run 2. The kinetic energy
spectrum indicates a direct enstrophy cascade of 2D NS turbulence.

spectrum for H
ψ
k . Thus, a sufficient separation between the Hinze scale and the dissipation scale

(Hd ≫ 1) is critical to uncovering elastodynamic phenomena.

E. The energy spectrum power law

When the φ field is forced at large scale, the kinetic energy spectrum is EK
k ∼ k−3, as shown in

Fig. 13. This spectrum is the same as that for the direct enstrophy cascade in 2D NS turbulence.
This result is initially surprising, because enstrophy is not a conserved quantity in the 2D CHNS
system. The kinetic energy spectrum for 2D CHNS turbulence is different from that for 2D MHD
turbulence. It is well known that in the direct energy cascade regime of 2D MHD, the energy spectrum
is EK

k ∼ k−3/2, which is called the Iroshnikov-Kraichnan (IK) spectrum [12,13]. The IK spectrum
is the consequence of the interaction between Alfvén waves propagating in opposite directions. The
result that the kinetic energy spectrum for the 2D CHNS system is significantly different from the IK
spectrum for MHD suggests that the back reaction of surface tension on the fluid motion is limited.

This initially surprising result is plausible because in the 2D CHNS system, Bψ vanishes in most
of the space. Bψ is large only in the interfacial regions, and the interfacial regions fill only a small
portion of the system, as shown in Fig. 14. On the other hand, the magnetic fields in MHD are

FIG. 14. B field for Run 6 (left) and Bψ field for Run 2 (right). From the color map we can see that the
structures look quite different.

054403-15



XIANG FAN, P. H. DIAMOND, L. CHACÓN, AND HUI LI

FIG. 15. The time evolution for the interface packing fraction P , the ratio of mesh grid number where
|Bψ | > B rms

ψ (or |B| > B rms) over total mesh grid number.

not localized to specific regions, so Alfvén waves can propagate everywhere. Define the interface
packing fraction P to be the ratio of mesh grid number where |Bψ | > Brms

ψ (or |B| > Brms) to the
total mesh grid number. This definition of interface packing fraction is a rather simple choice of
a figure of merit, but one for which we can easily grasp the underlying physics. In the 2D CHNS
system, P = 13.9% for Run 2; while for 2D MHD, P = 44.0% for Run 6. This notable difference
shows that only a small portion of the 2D CHNS system is strongly affected by the Bψ field, as
compared to MHD. The time evolution for the interface packing fraction P is shown in Fig. 15.
In the 2D CHNS system, as time progresses, the blob coalescence process drives the interfacial
region to a smaller and smaller interface packing fraction and thus suppresses the elastic effects on
fluid motion. If there is a larger number of blobs, there will be a larger interfacial region, and thus
the velocity field will be more heavily influenced by the Bψ field. In that case, the kinetic energy
spectrum will be more MHD-like.

VI. CONCLUSION AND DISCUSSION

2D CHNS turbulence is an analog to 2D MHD turbulence. The two systems have some common
features and also some important differences. See Table I for comparison and Table IV for contrasts.
The theories of 2D MHD turbulence give us inspiration and guidance for the study of 2D CHNS
turbulence.

TABLE IV. Contrast of 2D MHD and the 2D CHNS system.

2D MHD 2D CHNS

Diffusion A simple positive diffusion A negative, a self-nonlinear,
term and a hyper-diffusion term

Range of potential No restriction for range of A ψ ∈ [−1,1]
Interface packing fraction Not far from 50% Small
Back reaction j × B force can be significant Back reaction is apparently limited
Kinetic energy spectrum EK

k ∼ k−3/2 EK
k ∼ k−3

Suggestive cascade by EK
k Suggestive of direct energy cascade Suggestive of direct enstrophy cascade
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TABLE V. Simulation parameters. Note that for 2D MHD runs, ξ means µ
−1/2
0 , and D means η.

Run System ξ D ν ρ f0φ kf φ f0A kf A Reλ Hd We Gr ξ 2/ρ

Run 1 CHNS 0.015 10−3 10−3 1.0 0 − − − 5.5 39 0 0 2.25 × 10−4

Run 2 CHNS 0.015 10−3 10−3 1.0 0.1 4 − − 6.1 39 11 3.9 × 106 2.25 × 10−4

Run 3 CHNS 0.015 10−3 10−3 1.0 0.5 4 − − 25 35 56 2.0 × 107 2.25 × 10−4

Run 4 CHNS 0.015 10−3 10−3 1.0 1.0 4 − − 59 33 110 3.9 × 107 2.25 × 10−4

Run 5 CHNS 0.015 10−3 10−3 1.0 5.0 4 − − 719 30 550 2.0 × 108 2.25 × 10−4

Run 6 MHD 0.015 10−3 10−3 1.0 1.0 4 103 128 18 – – – 2.25 × 10−4

From the basic equations, it is easy to notice similarities between 2D CHNS and 2D MHD.
Most clear is that the surface tension force is a direct analog of the j × B force. The ideal quadratic
conserved quantities of these two systems have the same form, and this leads to the same cascade
directions. The linear elastic wave from the 2D CHNS system has a similar dispersion relation to
the Alfvén wave from 2D MHD. The linear elastic wave plays an important role in the dynamics
through the elasticization process, which is analogous to the Alfvénization process.

The scales between the Hinze scale and dissipation scale in the 2D CHNS system form the elastic
range. Separation of the Hinze scale and the dissipation scale (Hd ≫ 1) is critical to allow an elastic
range. In the elastic range, the surface tension interaction induces an elastic effect critical to the
nonlinear dynamics, so the system is more MHD-like.

By direct numerical simulation, we find that in the elastic range, the mean square concentration
spectrum is H

ψ
k ∼ k−7/3. This power law scaling can be recovered theoretically by assuming elastic

equipartition (which is at best marginally satisfied). The −7/3 power law is the same as the HA
k

spectrum in the inverse cascade regime of 2D MHD. The −7/3 power law is robust and independent
of the forcing strength. This result suggests that the dynamics of the fluctuating concentration field
is governed by the inverse cascade of H

ψ
k . The inverse cascade of Hψ is consistent with the blob

coalescence process.
The kinetic energy spectrum for the 2D CHNS system is EK

k ∼ k−3 when forced at large scale.
This spectrum is different from the IK spectrum in MHD and is the same as the kinetic energy
spectrum in the 2D NS turbulence direct enstrophy cascade regime. This result suggests that the
back reaction of surface tension on the fluid motion is limited. This is plausible because the back
reaction is only significant in the interfacial regions, which fill only a small part of the system. This
is an important difference between 2D CHNS turbulence and 2D MHD turbulence. In order to make
the kinetic energy spectrum more MHD-like, we need to increase the interface packing fraction. We
will obtain larger interfacial regions if we have a large number of small blobs instead of a small
number of large blobs. Thus the apparent next step is to increase the forcing strength or change the
form of forcing in order to increase the interface packing fraction. However, a larger forcing strength
leads to a smaller Hinze scale, and thus a shorter elastic range. If we want to keep a broad enough
elastic range, we have to decrease the dissipation scale at the same time, i.e., decrease ν. This requires
higher resolution and more computing resources, and so we will perform runs with higher resolution
in future works. The definition of interface packing fraction we use in this paper is rather crude,
and more study about how to characterize the interface, what physics controls the interface packing
fraction, and how to increase the interface packing fraction would be interesting. The statistics of
|Bψ | and how it is related to the interface packing fraction is also a relevant interesting problem to
study.

The theories of 2D MHD turbulence can also inspire the study of turbulent transport and memory
effects in 2D CHNS turbulence. Even a weak mean magnetic field can result in a large mean square
fluctuation. Such small-scale magnetic fields will result in enhanced memory, so turbulent transport
in MHD with even a weak large-scale magnetic field is suppressed [3,33–35]. This effect may also
appear in 2D CHNS turbulence. It is also interesting to investigate the possible change of momentum
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transport in the elastic range of CHNS, due to elastic wave effects. 2D CHNS turbulence also has
similarities to elastic turbulence in polymer solutions [36,37]. The comparison and contrast among
MHD, CHNS, and polymer hydrodynamic turbulence will be discussed in future works.
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